Effect of 7-methylxanthine on human retinal pigment epithelium cells cultured in vitro
نویسندگان
چکیده
Purpose To evaluate the effects of 7-methylxanthine (7-MX) on the growth of human retinal pigment epithelium (RPE) cells and to observe the changes in the expression of adenosine receptors (ADORs) in RPE cells upon 7-MX treatment. Methods Human RPE cells (monolayer at about 80% confluence) were cultured in vitro in the presence or absence of 7-MX. Cell proliferation was evaluated with 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The cell cycle distribution and apoptosis level were analyzed with flow cytometry. Quantitative PCR and immunofluorescence assay were used to examine the mRNA and protein expression of ADORs. Results 7-MX at low concentrations had no effect on the proliferation of RPE cells, whereas 100 µmol/l 7-MX slightly decreased cell proliferation at 48 h but without a statistically significant difference. The 7-MX treatment was performed at the low concentration of 10 μmol/l in the following experiments. The proportion of RPE cells in the G1 stage was slightly increased at 24 h (p=0.035) but decreased at 48 h (p=0.0045) upon 7-MX treatment; and the proportion was restored to normal at 72 h. No statistically significant change in apoptosis levels was found in RPE cells cultured with 7-MX. The expression of ADORA1, ADORA2A, and ADORA2B in RPE cells was inhibited by 7-MX treatment at 48 h, while the expression levels appeared to rebound at 72 h. Conclusions 7-MX has little effect on the proliferation or apoptosis level of human RPE cells; however, in short-term treatment, 7-MX disturbs the proportion of cells in the G1 stage and inhibits the expression of ADORA1, ADORA2A, and ADORA2B.
منابع مشابه
Morphological changes in injured retinal pigment epithelium and photoreceptor cells after transplantation of stem cells into subretinal space
Introduction: Degenerative retinal diseases are main cause of irreversible blindness. Stem cells therapy is a promising way in these diseases. Therefore, mesenchymal stem cells because of its safety can produce degenerated cells and can play important role in treatment. The aim of this study was to examine morphological changes in injured retinal pigment epithelium (RPE) and photoreceptor cells...
متن کاملInvestigation of Differentiated Embryonic Stem Cells Growth on Optimized Porous Polymeric Bed with Fuzzy System
Introduction: Age-related macular degeneration (AMD) is one of the retina diseases in which retinal pigment epithelium cells are degraded and lead to blindness. Available treatments only slow down the progression of it. In this study, human embryonic stem cells (hESCs) differentiated into retinal pigment epithelium cells were cultured on a polycaprolactone scaffold. Methods: The optimization o...
متن کاملMesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells
Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these ...
متن کاملHistochemical study of retinal photoreceptors development during pre- and postnatal period and their association with retinal pigment epithelium
Objective(s):The aim of this study was to evaluate distribution and changes of glycoconjugates of retinal photoreceptors during both pre- and postnatal development. Materials and Methods: Tissue sections from days 15 to 20 of Wistar rat embryos and 1 to 12 postnatal days of rat newborns including developing eye were prepared for lectinhistochemistry technique. Horseradish peroxidase (HRP)-label...
متن کاملMethods for culturing retinal pigment epithelial cells: a review of current protocols and future recommendations
The retinal pigment epithelium is an important part of the vertebrate eye, particularly in studying the causes and possible treatment of age-related macular degeneration. The retinal pigment epithelium is difficult to access in vivo due to its location at the back of the eye, making experimentation with age-related macular degeneration treatments problematic. An alternative to in vivo experimen...
متن کامل